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Problem Statement: online setting

r)peiIE f(x) := Ecup[f(x; E)],

functions f, V£, V2f,V3f, ... VPf are Lipschitz
continuous for all i € {0,1,...,p}, x,y € E:

IV £(x) = V'F(y)ll < Liflx—yll.
And _ '
[V'f(x,§) = V()] < M.



Problem Statement: offline setting

m

min £(x) = %Z £(%).

xeR" -
i=1

functions f, V£, V?f,V3f, ... VPf are Lipschitz
continuous for all i € {0,1,...,p}, x,y € E:

IV(x) = V() < Lillx = yll.



Some Definitions

Power prox function:

dp(x) = EHXH”

Taylor approximation of functlon f
O o(y) & F(x) +Z —Dif(x)ly—x', y€E

Nesterov's model:
M

Qe p(y) = Puply) + mdpﬂ(y —x)



Some Definitions

Inexact Taylor approximation

Duop(Y) = F (k) + e (y —xk) + %(y — x) Bi(y — xx)

Ty — <o)

where gy, B, T, are approximate derivatives
VF (xk), V2f (xk), V3f (xx) through sampling.



Sampling Conditions

For a given € accuracy, one can choose the size of
the sample sets S; for sufficiently small k; > 0 such
that Yy € R?

1(Geoi =V F ) ly—xa] THI < i P ly—xi |1

kv’_

For sampled gradient, Hessian and tensor of

third-order partial derivatives
18k = V(x| < rge,

1(Bk — V2F (i)l — x| < pe?|ly — x|,
| Tuly — xe]? — VAFOa)ly — xil?ll < wee™3||y — x|



Sampling Conditions

Lemma. Let Assumptions be satisfied. Then for any
fixed small constants k; > 0 we can choose sample
set S; sizes of approximate derivatives G;

~ L,'_ M,' 2 p—i+l
n/:(’)(( H; ) e PH)

R;

so that with probability 1 — 0 sampling conditions
hold.



Inexact Model

0
(i —2)!

p
xp(Y) = Guply) +billy = x| + D di(y — %)+
i=2

o

mdpﬂ(y —x)

Theorem 1.

Model wy p(y) majorizes the function f:
F(4) < ply).

Theorem 2.

Model wy 5(y) is convex for all y € E.



Algorithm

Xe+1 = arg min wy, p(y)
yeRn

Theorem 3. If Condition 1 is satisfied and o > L,
then

f(xri1) — f(x) <

p+1—i

kie » D' UDPJrl
(W.:mz - Tp).

Complexity O ((LPDPH/s)l/p) :




Accelerated Stochastic Tensor
Method



Sampling Conditions

For a given € accuracy, one can choose the size of
the sample sets S; for sufficiently small x; > 0 such

that Vy € R?

1 ~ . . .
S#ie Sy = x| < (Gui = VGOl — A
< m,-g"iif" ly —x||"?1i=2,...,p.
Corollary.

(G = V' FOy =" H| < wie®DPlly — x|,



Algorithm 2 Accelerated Inexact Tensor Method
1: Input: convex function f such that VPf is L,-Lipschitz; ¢ is target objective residual; zg is
starting point; constants ¢ > 3Ly, 8 > 0; nonnegative nondecreasing sequences {%!}>o for
i=2,...,p, and

t

p+1
y=—— A= 1—ay). 41
=ity A=llo-e (an)
2: Precomputation: Call the inexact oracle to compute Gy, ; for i = 1, ..., p such that Condition

2 is satisfied, compute

z) = arg 11161%3{%0@(@ + ﬁdpﬂ(z — o)} (42)
& B

Y1 = arg min {Tﬁl(ﬂﬁ) =f(= +Z 1), di(z — z0) + -1 dpia(z — zo)} (43)
i=! 2

3: fort >0 do

4:  Call the inexact oracle to compute G, ; for i = 1,...,p such that Condition is satisfied.
5: Set
up = (1 — au)we + ayy, (44)
Typ1 = arg mm {¢u,1p z)+ ﬁdp+1 (z —u)}. (45)

6:  Compute
Pt —t_—l
—_— H 'L
Ye+1 = arg min | Pr () +l§:2 (i=

7. end for




Rate of Convergence

After T iterations of Accelerated Stochastic Tensor
Method function f will satisfy:

flxr) = f(x) <

P pEL_i o 1
kie 1 R (L, + pB)RP*
Complexity O(g_ﬁ).




Implementation Details



Solution of the Auxiliary Problems
Smooth wy 5(s) using the following inequality

On each step we need to solve the following problem:

Ge3(y) = dx3ly) + <% + %) da(y — %)+

2 2 4
+ (nggs + /‘JbE% + ’it;%) dg(y — x) + /{g;s — min.




Solution of the Auxiliary Problem

Lemma 1.
Function (x(s) satisfies the strong relative convexity
and relative smoothness conditions

V(s) < VLl < (55 ) T

with
px =73 (1= 2) (Bh, )+ 752 da(s)+(1 = 2) Coda(s)+ (1 — 2) Zedha(s).

This condition allows us to solve the auxiliary
problem very efficiently.



Solution of the Auxiliary Problem

We solve the auxiliary problem with the following
algorithm:

i1 = arg min {(V¢ (hk) ;b —hi) + k() B,, (hx, h)),

where (3, (u,v) is the Bregman divergence of
function py(-):
Bp.(u;v) = px(v) = pulu) = (Vpu(u), v — u).

This method has linear rate of convergence.



Implementation Details

Accelerated Stochastic Tensor Method



Sampling Conditions

For a given € accuracy, one can choose the size of

the sample sets S; for sufficiently small k; > 0 such
that Yy € RY

1 ~ ) ) .
STy = X2 < (G = GOy —
<y = x| =2,




Sampling Conditions

To satisfy sampling conditions for accelerated method
we can do the following:

o Sample Gy (as in non-accelerated method) s.t.
(G =V F))y—x]" || < kg D/P|ly—x]].
o Add regularization 3/4,-5%11E,-[y — x]'2.
We obtain

p+1l—i
2Kie Pl

y —x|I' 7?1 < (Gyi + 3kie st E; — V)l —

< drie ot |ly — x| i=2,...,p.




Auxiliary Problem

On each step of accelerated method we need to solve
the following subproblem

L~ o
Xt+1 = arg Xrgﬁgn{gbunp(x) + M dp1(X — )}

Using regularization from the previous slide the
problem becomes:

p
p+1-2
— in{o, Dkie Pt di(x —
Xe41 = arg E(nel]g{gb p(X) + z; ki P di(x — up)+
o
mdpu(x — ur)}.
That subproblem can be solved for p = 3 like in
non-accelerated method.
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